Hydrogen Bonding. Part 13.t A New Method for the Characterisation of GLC Stationary Phases-The Laffort Data Set

Michael H. Abraham * and Garry S. Whiting
Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ Ruth M. Doherty
Naval Surface Warfare Centre, White Oak Laboratory, Silver Spring, Maryland 20910, USA
Wendel J. Shuely
US Army Chemical Research, Development and Engineering Centre, Aberdeen Proving Ground, Maryland 21010, USA

A number of equations for the correlation of retention data for a series of solutes on a given stationary phase (or solvent) have been investigated with the aim of characterising stationary phases. The two most successful equations are,

$$
\begin{align*}
& \mathrm{SP}=c+d \delta_{2}+s \pi_{2}{ }^{*}+a \alpha_{2}{ }^{\mathrm{H}}+b \beta_{2}{ }^{H}+/ \log L^{16} \tag{a}\\
& \mathrm{SP}=c+r R_{2}+s \pi_{2}{ }^{*}+a \alpha_{2}{ }^{H}+b \beta_{2}{ }^{H}+/ \log L^{16} \tag{b}
\end{align*}
$$

In the present case the dependent variable $S P$ is $\log L-\log L^{\text {Docane }}$ and the explanatory variables are solute parameters as follows: δ_{2} is an empirical polarisability correction term, R_{2} is a polarisability parameter that reflects the ability of a solute to interact with a solvent through π and n electron pairs, $\alpha_{2}{ }^{H}$ is the solute hydrogen-bond acidity, $\beta_{2}{ }^{H}$ is the solute hydrogen-bond basicity, $\pi_{2}{ }^{*}$ is the solute dipolarity/polarisability, and L^{16} is the Ostwald solubility coefficient of the solute on n-hexadecane at 298 K . The constants c, r, s, a, b, and $/$ in the more useful equation (b) are found by the method of multiple linear regression analysis, and serve to characterise a solvent phase in terms of specific solute/solvent interactions. Application of equation (b) to the five stationary phases examined by Laffort et al. shows that the magnitude of these constants is in accord with general chemical principles, and that the present procedure constitutes a new, general method for the characterisation of gas chromatographic stationary phases.

The most widely used method for the classification of stationary phases in gas-liquid chromatography (GLC), is that due to Rohrschneider, ${ }^{1}$ either as such, or as subsequently modified by McReynolds. ${ }^{2}$ Retention data of solutes are first expressed as Kovats retention indices ${ }^{3}$ calculated according to equation (1):

$$
\begin{equation*}
I^{i}=100\left(\frac{\log \tau^{i}-\log \tau^{m}}{\log \tau^{m+1}-\log \tau^{m}}\right)+100 m \tag{1}
\end{equation*}
$$

Here, \boldsymbol{I} is the retention index of solute i on a given stationary phase at a given temperature, τ^{i} is the adjusted retention time of solute i, and τ^{m+1} and τ^{m} are the adjusted retention times of n-alkanes of carbon number $m+1$ and m, respectivey. Rohrschneider ${ }^{1}$ determined values of I^{i} for the selected solutes benzene, ethanol, butanone, nitromethane, and pyridine, on squalane (SQ), and on a stationary phase to be investigated (P), and defined a differential set of I^{i} values through equation (2),

$$
\begin{equation*}
\Delta I^{i}=I_{\mathrm{P}}{ }^{i}-I_{\mathrm{SQ}}{ }^{i} \tag{2}
\end{equation*}
$$

Then five 'Rohrschneider constants,' x, y, z, u, and s, one for each of the selected solutes, can be used to characterise the stationary phase, P, according to equation (3), illustrated for the selected solute benzene.

$$
\begin{equation*}
x=\Delta I^{\text {benzene }} / 100 \tag{3}
\end{equation*}
$$

An 'overall' stationary phase polarity can also be obtained as the sum of the ΔI values for the five test solutes.

McReynolds ${ }^{2}$ suggested the use of ten test solutes, rather than five, these being benzene (x^{\prime}), butan-1-ol $\left(y^{\prime}\right)$, pentan-2-one (z^{\prime}), nitropropane (u^{\prime}), pyridine (s^{\prime}), 2-methylpentan-2-ol (h^{\prime}), 1-iodobutane (j^{\prime}), oct-2-yne (k^{\prime}), dioxane (l^{\prime}), and cis-hydrindane (m^{\prime}). Later workers tended to reduce the number of McReynolds test solutes, for example to the first five solutes. ${ }^{4}$ An overall stationary phase polarity can again be calculated as the sum of ΔI^{i} values ($i=x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}$, and $\left.s^{\prime}\right)$; for an account of work in this area, the comprehensive review of Budahegyi et al. ${ }^{5}$ is available.

However, although the Rohrschneider-McReynolds method is the basis of most approaches to the classification of stationary phases, quite recently Poole et al. ${ }^{6}$ have severely criticised the method on a number of technical and theoretical grounds. Their main technical objection is that alkanes (necessary for the determination of I values) are sorbed onto polar stationary phases mainly by interfacial adsorption, rather than by true gasliquid partitioning. If the I_{P} values are incorrect, then the whole procedure is invalid (for polar phases). A theoretical objection is that the 'overall' polarity, defined as above cannot be a true measure of polarity, since it depends principally on the solubility of the n-alkanes in the stationary phase. ${ }^{6}$

There are other difficulties over the RohrschneiderMcReynolds method. Firstly, the method is entirely restricted to GLC retention data, so that there is no possibility of

[^0]Table 1. Some values of the gas \longrightarrow solvent methylene increment, $\Delta G_{\mathbf{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$, in $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ at $298 \mathrm{~K}^{\boldsymbol{a}}{ }^{a}$

	Solvent	$\Delta G_{\mathbf{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$	Solvent	$\Delta G_{\mathbf{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$
	Cyclohexane	-0.76	Propanone	-0.62
	Hexadecane	-0.74	Ethanol	-0.61
Decane	-0.74	Dimethylformamide	-0.60	
	Hexane	-0.74	N-Methylpyrrolidi-2-none	-0.56
	Benzene	-0.74	Methanol	-0.56
	Chlorobenzene	-0.73	Propylene carbonate	-0.48
	Tetrachloromethane	-0.71	Dimethyl sulphoxide	-0.48
	Octan-1-ol	-0.68	Ethane-1,2-diol	-0.35
	Butan-1-ol	-0.66	Water	+0.18
	Nitrobenzene	-0.64		

${ }^{a}$ All values from data in ref. 11.

Table 2. Correlations of $\Delta G_{\mathrm{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$ against some solvent parameters. ${ }^{a}$

Intercept	Slope	n	R	SD
(a) All solvents in Table 1				
-0.862	$0.188 \delta_{\mathbf{H}}{ }^{2} / 100$	19	0.981	0.04
-0.804	$0.370 \pi_{1}{ }^{*}$	19	0.673	0.17
-0.671	$0.043 \mu_{1}$	19	0.328	0.21
-0.955	$0.949 f(\varepsilon)$	19	0.554	0.19
-1.396	$0.019 E_{\mathrm{T}}$	16^{b}	0.786	0.15
0.058	$-2.529 f(\eta)$	19	0.376	0.21
-0.399	-0.089 MR	19	0.530	0.19
(b) Nonhydroxylic solvents in Table 1				
-0.890	$0.230 \delta_{\mathbf{H}}{ }^{2} / 100$	13	0.941	0.04
-0.758	$0.189 \pi_{1}{ }^{*}$	13	0.772	0.07
-0.746	$0.046 \mu_{1}$	13	0.911	0.04
-0.877	$0.636 f(\varepsilon)$	13	0.859	0.05
-1.273	$0.016 E_{\mathrm{T}}$	$11^{\text {c }}$	0.911	0.04
-0.679	$0.082 f(\eta)$	13	0.024	0.11
-0.570	-0.035 MR	13	0.437	0.10

${ }^{a}$ These are $\delta_{H}{ }^{2}$ the Hildebrand cohesive energy density, $\pi_{1}{ }^{*}$ the Kamlet-Taft solvent dipolarity, μ_{1} the dipole moment, $f(\varepsilon)$ the dielectric constant function $(\varepsilon-1) /(2 \varepsilon+1), E_{T}$ the Reichardt solvent parameter, $f(\eta)$ the refractive index function $\left(\eta^{2}-1\right) /\left(\eta^{2}+2\right)$, and MR a molar refraction we define as $10 f(\eta) V_{x}$ where V_{x} is the intrinsic volume. ${ }^{b}$ Excluding values for hexadecane, decane, and octan-1-ol. ${ }^{c}$ Excluding values for hexadecane and decane.
comparing GLC stationary phases with common solvents. Secondly, the method is far too coarse to allow any analysis of solute-solvent interactions, which are actually the basis of gas-liquid partition, and hence of retention data.

Poole et al., ${ }^{6}$ following several other workers, ${ }^{7-10}$ suggested that the methylene increment to the gas \longrightarrow stationary phase transfer, as $\Delta G_{\mathrm{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$ could be taken as a better measure of the overall polarity. Since $\Delta G_{\mathrm{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$ can be obtained from a variety of homologous series, the difficulty over retention processes of alkanes is avoided. However, it is by no means obvious what a general polarity based on $\Delta G_{\mathrm{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$ means. Abraham ${ }^{11}$ has published data from which values of $\Delta G_{\mathrm{s}}{ }^{\circ}$ $\left(\mathrm{CH}_{2}\right)$ can be obtained for the n-alkanes in a number of common solvents (see Table 1). Note that since the original measurements were non-chromatographic, the n-alkane difficulty does not arise. We can match the $\Delta G_{\mathrm{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$ values against various solvent polarity parameters, and give simple regression constants in Table 2. For the nonhydroxylic solvents, there are reasonable correlations of $\Delta G_{s}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$ with solvent
${ }^{*}$ The units of $\delta_{\mathrm{H}}{ }^{2}$ are cal cm^{-3}, where $1 \mathrm{cal}=4.184 \mathrm{~J}$, and the units of μ are Debyes, where $1 \mathrm{D} \equiv 3.336 \times 10^{-30} \mathrm{C} \mathrm{m}$.
dipole movement (μ), or with dielectric constant function $(\varepsilon-1) /(2 \varepsilon+1)$, or with Reichardt's E_{T} parameter. But none of these are as good as the solvent cohesive energy density, as $\delta_{\mathrm{H}}{ }^{2} / 100$, and for the total solvent list in Table 2(a), only the latter yields a reasonable correlation.* We have examined various double correlations amongst parameters that are not self-correlated, but the only one that is significantly better than the single correlation in $\delta_{\mathrm{H}}{ }^{2} / 100$ is that in equation (4), for nonhydroxylic solvents, where the correlation coefficient, R, between $\delta_{\mathbf{H}}{ }^{2}$ and $f(\eta)$ is only 0.265 . Equation (4) can be

$$
\begin{gather*}
\Delta G_{\mathrm{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)=-0.679+0.246 \delta_{\mathrm{H}}{ }^{2} / 100-0.847 f(\eta) \tag{4}\\
n=13 \quad R=0.970 \quad \mathrm{SD}=0.03
\end{gather*}
$$

rationalised using a cavity theory of solution. In order to create a cavity in a solvent, solvent-solvent bonds must be broken in an endoergic process, modelled by $\delta_{\mathrm{H}}{ }^{2}$. Then on insertion of the solute CH_{2} group into the cavity, exoergic CH_{2}-solvent general dispersion interactions will be set up, modelled at least roughly by $f(\eta)$. The $\Delta G_{\mathrm{s}}{ }^{\circ}\left(\mathrm{CH}_{2}\right)$ increment is therefore not a general polarity parameter in the sense of, say $\pi_{1}{ }^{*}$ or E_{T}, but reflects a combination of solvent-solvent bond breaking and $\mathrm{CH}_{2}-$ solvent dispersion interactions.

Other workers have moved away from the RohrschneiderMcReynolds method and have attempted to account for retention data on the basis of specific solute-solvent interactions. Ecknig et al. ${ }^{12}$ characterised solute-solvent interactions in terms of two energy parameters, a nonpolar or dispersion parameter and a polar parameter that includes hydrogenbonding as an electrostatic effect. The calculation of these parameters, however, is not trivial, and application seems to be restricted to aliphatic solutes only. ${ }^{13}$ The UNIFAC solution-of-groups method has been investigated also, but yielded only rough estimates of retention data. ${ }^{14} \mathrm{~A}$ few workers have attempted to characterise stationary phases using indices that include stationary phase acidity and basicity as such. Burns and Hawkes, ${ }^{15}$ for example, used retention data on the butan-1-olethyl acrylate pair of solutes to obtain stationary phase basicities, and on pyridine-benzene to obtain stationary phase acidities, but conceded that the obtained indices were rather 'shaky.' Hawkes et al. ${ }^{16}$ later carried out various spectroscopic studies of solutes in stationary phases and tabulated indices of dispersion forces, polarity, acidity, and basicity for a number of stationary phases (but note that acidity was obtained from retention data on the n-butylamine-n-butyl chloride pair of solutes).

It seems, therefore, to be acknowledged that factors such as dispersion, polarity, acidity, and basicity are important in solute-stationary phase interactions. ${ }^{13,15,16}$ In order to quantify these effects, some general system in which both solute and stationary phase are characterised is necessary. The pur-
pose of this paper is to give one set of examples of such a system that can be used for GLC stationary phases, common solvents, and, indeed, any condensed phase.

We start with two equations suggested by Abraham, Doherty, Kamlet, and Taft, and their co-workers, ${ }^{17-20}$

$$
\begin{align*}
& \mathrm{SP}=c+d \delta_{2}+s \pi_{2}^{*}+a \alpha_{2}+b \beta_{2}+m V_{2} \tag{5}\\
& \mathrm{SP}=c+d \delta_{2}+s \pi_{2}^{*}+a \alpha_{2}+b \beta_{2}+l \log L^{16} \tag{6}
\end{align*}
$$

In equations (5) and (6), ${ }^{*}$ SP denotes some property of a series of solutes, for example $\log V_{G}$ or $\log \tau$ for solutes on a given stationary phase under the same set of conditions. The explanatory variables are δ_{2}, a polarisability correction term taken as zero except for polyhalogenated aliphatic compounds (0.5) and for aromatic compounds (1.0), $\pi_{2}{ }^{*}$ the solute dipolarity, α_{2} the solute hydrogen-bond acidity, β_{2} the solute hydrogen-bond basicity, V_{2} the solute volume, and $\log L^{16}$ where L^{16} is the solute Ostwald solubility coefficient on n-hexadecane at $298 \mathrm{~K} .{ }^{21}$ The constants c, d, s, a, b, m, and l are found by multiple linear regression analysis of SP against as many explanatory variables as are statistically significant.

The terms in equations (5) and (6) can be, for the most part, directly identified with particular solute-solvent interactions. ${ }^{17,18}$ The $s \pi_{2}{ }^{*}$ term arises through solute-solvent dipole-dipole or dipole-induced dipole interactions, and hence the magnitude of the s-constant will reflect the solvent (or stationary phase) dipolarity. The $a \alpha_{2}$ term reflects interactions between hydrogen-bond solute acids and a hydrogen-bond solvent base, so that the a-constant will now be a measure of the solvent hydrogen-bond basicity. Conversely, the b-constant in the $b \beta_{2}$ term will be a measure of hydrogen-bond solvent acidity. The V_{2} and $\log L^{16}$ terms both involve composite interactions, and will include both an endoergic cavity term and an exoergic solute-solvent general dispersion interaction.

There are a number of GLC retention parameters that could be used as the dependent variable (SP) in equations (5) and (6). The standard Gibbs energy of solution of a gaseous solute is given by equation (7), where L is the Ostwald solubility

$$
\begin{align*}
&-\Delta G_{\mathrm{s}}^{\circ}=R T \ln L=R T \ln \left(V_{\mathrm{G}} \rho_{1}\right)= \\
& R T \ln V_{\mathrm{G}}+R T \ln \rho_{1} \tag{7}
\end{align*}
$$

coefficient of the solute in the given solvent, often referred to as K the gas-liquid partition coefficient; V_{G} is the retention volume of the solute at the column temperature, \dagger and ρ_{1} is the solvent or stationary phase density. The standard states for $\Delta G_{s}{ }^{\circ}$ are unit concentration in the gas phase and unit concentration in solution. The most useful dependent variable is $\log L$; not only can this be obtained from $\log V_{G}$ values by GLC, but $\log L$ values can be derived for solution of gaseous solutes in simple solvents If values of ρ_{1} are unavailable so that $\log V_{G}$ itself must be used, there is little problem-all the constants in equations (5) and (6) remain the same except for c which will alter by $\log \rho_{1}$. Unfortunately, much retention data in GLC is expressed only as the retention index I, equation (1), which on its own is not connected directly to any physicochemical parameter such as $\log L$ (or $\log K$). Only if the so-called b-coefficient, herein designated as B, is specified for the variation of

[^1]$\log V_{G}$ with carbon number for n -alkanes can the retention index be reconverted into a suitable parameter for use in equations (5) and (6). Even adjusted retention times, such as $\log \tau$ values, can be used in these equations since $\log L=$ $\log \tau+$ constant.

Results and Discussion

One of the most extensive and carefully determined sets of data is that of Laffort et al. ${ }^{22}$ who listed retention indices of 240 compounds on five stationary phases at 393 K . Since Laffort et al. ${ }^{22}$ gave the necessary B-values, ${ }^{23}$ we can convert the reported values of I into $\log L$ values via equation (8),

$$
\begin{equation*}
\log L-\log L^{\text {Decane }}=\log L^{\prime}=\left(\frac{I-1000}{100}\right) B \tag{8}
\end{equation*}
$$

The constant c in equations (5) and (6) is now of little significance, but all the other constants are unaffected by the use of $\log L^{\prime}$ rather than $\log L$ itself. The five Laffort phases are Carbowax, diethyleneglycol succinate (DEGS), polyphenyl ether (PPE), tricyanoethoxypropane (TCEP), and an ester of 'pyromellitic acid and trihydrofluoro alcohol,' known as Zonyl E-7 (ZE7).

Of the explanatory variables, δ_{2} is trivial, $\pi_{2}{ }^{*}$ the KamletTaft dipolarity parameter was as before, ${ }^{17-20}$ whilst for α_{2} and β_{2} we used our new $\alpha_{2}{ }^{\mathrm{H}}$ and $\beta_{2}{ }^{\mathrm{H}}$ hydrogen-bond solute parameters. ${ }^{24-27}$ For a few difunctional bases such as anisole we used recently determined 'effective' or 'summation' $\Sigma \boldsymbol{\beta}_{2}{ }^{\mathbf{H}}$ values. ${ }^{28}$ The solute volume was taken as McGowan's intrinsic volume, ${ }^{29} V_{x}$, which has the merit that it can be calculated for any compound of known structure, and values of L^{16} were as before, supplemented by a number of additional values. ${ }^{28}$ The general equations (5) and (6) thus take the specific formulation,

$$
\begin{align*}
& \log L^{\prime}=c+d \delta_{2}+s \pi_{2}^{*}+a \alpha_{2}{ }^{\mathbf{H}}+b{\beta_{2}}^{\mathbf{H}}+m V_{\star} \tag{9}\\
& \log L^{\prime}=c+d \delta_{2}+s \pi_{2}^{*}+a{\alpha_{2}}^{\mathbf{H}}+b{\beta_{2}}^{\mathbf{H}}+l \log L^{16} \tag{10}
\end{align*}
$$

We had available a complete set of explanatory variables for 168 solutes out of the 240 . Details of the solutes and parameters are in Table 3, and the regressions based on equations (9) and (10) are summarised in Tables 4 and 5. The overall correlation coefficients, R, and standard deviations, SD, are not particularly good, but we stress that these refer to 'all solute' regressions. We wish to point out that the purpose of constructing these regressions is to characterise the statinary phases, and not to provide equations that can be used to predict further retention values. The obtained regression equations summarised in Tables 4 and 5 are adequate for the former, but not for the latter, purpose. We note also that as we have found before, ${ }^{20}$ equation (10) yields much better regressions than does equation (9) for gas/liquid partition coefficients. \ddagger

We can now examine the constants in equations (9) and (10) to check whether they are chemically reasonable. All five phases are to some extent dipolar, so that the s-constant in $s \pi_{2}{ }^{*}$ should be positive, as observed. The order of stationary phase dipolarity, as measured by the s-constant, is TCEP $>$ DEGS $>$ Carbowax $>$ ZE7 \geqslant PPE on equation (10), and almost the same on equation (9); this seems chemically quite reasonable. Again, all five phases are hydrogen-bond bases, so that the a constant in $a \alpha_{2}{ }^{\mathrm{H}}$ should be positive. The order of stationary phase basicity is Carbowax $>$ DEGS \geqslant TCEP $>$ ZE7 \geqslant PPE on both equation (9) and equation (10). As might be expected, the fluoroester ZE7 is both less dipolar and less basic than the ester DEGS. Nominally, the five phases are all non-hydrogen-bond acids, so that the b-constant in $b \beta_{2}{ }^{H}$ should be near zero.

There is a difficulty here, in that over the 168 solute set, the explanatory variable $\beta_{2}{ }^{\mathrm{H}}$ is not independent, there being a cross correlation coefficient of 0.673 between $\beta_{2}{ }^{\mathrm{H}}$ and $\pi_{2}{ }^{*}$. The total correlation matrix in terms of R is as follows:

	δ_{2}	$\pi_{2}{ }^{*}$	$\alpha_{2}{ }^{\mathrm{H}}$	$\boldsymbol{\beta}_{2}{ }^{\mathrm{H}}$
$\pi_{2}{ }^{*}$	0.302			
$\alpha_{2}{ }^{\mathrm{H}}$	-0.188	0.059		
$\boldsymbol{\beta}_{2}{ }^{\mathrm{H}}$	-0.164	0.673	0.373	
$\log L^{16}$	0.052	0.073	-0.032	0.075

We therefore repeated the regressions, excluding the $\beta_{2}{ }^{H}$ parameter, and we conclude that none of the stationary phases has any significant hydrogen-bond acidity [see Tables 5(a) and 5(b)]

The l-constants in $l \log L^{16}$ are all much lower than unity. Part of this will certainly be due to the operating temperature of 393 K instead of 298 K , but part is probably also due to the lessening of general solute-solvent dispersion interactions by comparison to n -hexadecane solvent (at 298 K).

We can conclude that equation (9) and particularly equation (10) are suitable for the characterisation of GLC stationary phases through a set of constants c, d, s, a, b, and l. Unlike Rohrschneider-McReynolds constants, however, those derived from equation (10) yield quantitative information on the propensity of the phase to take part in given solute-stationary phase interactions. The difficulty over n-alkanes on polar phases does not apply to the application of equation (10), because incorporation of alkanes into the solute data set is not essential. Furthermore, an additional advantage of the present method is that it is now possible to compare GLC stationary phases with other condensed phases, for example common solvents. From preliminary regressions ${ }^{20}$ we know that the s constant for ethyl acetate is ca. 1.8 , so that the dipolarity of tricyanoethoxypropane at 393 K is no more than that of a simple ester at 298 K . We hope to apply equation (10) to a variety of solvents, as well as to other GLC stationary phases, in order to obtain a general classification of condensed phases.

There are disadvantages in the use of equations (9) and (10). In order to obtain suitability firm regressions with five explanatory variables, it is necessary to obtain retention data for not less than about 30 solutes. However, since only $\log \tau$ values are needed in order to determine all the constants except c, this is not an onerous task. A more important disadvantage is revealed by an examination of the origin of the explanatory variables in equations (9) and (10). The dependent variable is ideally $\log L($ or $\log K)$, i.e., a Gibbs energy related quantity via an equilibrium constant. If $\log V_{\mathrm{G}}, \log L^{\prime}$ or $\log \tau$ are used, these quantities are still equivalent to the use of $\log L$ as far as all the terms except the c-constant are concerned. Hence for thermodynamic consistency, all the explanatory variables should be Gibbs energy related. There is no difficulty over $\alpha_{2}{ }^{\mathrm{H}}$, $\beta_{2}{ }^{\mathrm{H}}$, and $\log L^{16}$ since these are all derived from equilibrium constants, as $\log K$ values. ${ }^{21,24-27}$ The variable V_{X} is not a Gibbs energy term, but since we prefer equation (10) to equation (9) this does not concern us overmuch. A more pressing problem is

[^2]the $\delta_{2} / \pi_{2}{ }^{*}$ formulism: the δ_{2} parameter is simply an empirical correction factor, whilst the $\pi_{2}{ }^{*}$ parameter originates as a spectroscopically determined solvent $\pi_{1}{ }^{*}$ parameter, and is certainly not a Gibbs energy related quantity. Furthermore, $\pi_{1}{ }^{*}$ can only be determined for compounds that are liquids at room temperature, and can be equated to $\pi_{2}{ }^{*}$ only for nonassociated liquids. All other $\pi_{2}{ }^{*}$ values have either been estimated or have been obtained via various $\pi_{2}{ }^{*} /$ dipole moment correlations. ${ }^{19}$ Because of the indeterminate nature of $\pi_{2}{ }^{*}$, it becomes impossible to connect the $s \pi_{2}{ }^{*}$ term in a regression equation with any specific solute-solvent interaction. In the above discussion we have used the s-constant as a measure of 'dipolarity', but more correctly it will represent some blend of polarisability and dipolarity. We set out now our attempts to resolve these difficulties by replacement of the $\delta_{2} / \pi_{2}{ }^{*}$ parameters in equation (10).

Construction of a New General Equation.-We first examine the terms in equation (10), in order to specify more exactly the parameters required to take the place of δ_{2} and $\pi_{2}{ }^{*}$. The $\alpha_{2}{ }^{\mathrm{H}}$ and $\beta_{2}{ }^{\mathrm{H}}$ parameters take care of hydrogen-bond interactions, as spelt out above, and will be retained in any new equation. As we have seen in the introduction, the $\log L^{16}$ parameter is very useful in that it accounts for cavity effects, together with general dispersion interactions of the solute-nonpolar solvent (hexadecane) type. We are then left with solute-solvent dipole-dipole and dipole-induced dipole effects, together with additional dispersion interactions that may loosely be described as polarisability effects. The obvious solute parameter needed to describe dipole-dipole type interactions is the dipole moment $\left(\mu_{2}\right)$. Following Kirkwood, ${ }^{30}$ we use $\mu_{2}{ }^{2}$, which has the advantage that it is very nearly a free energy related quantity. \dagger Various physical quantities can be used to model dispersion/polarisability interactions. We have briefly investigated both the solute molar refraction, MR, and the solute polarisability, but found neither satisfactory when used in combination with $\mu_{2}{ }^{2}, \alpha_{2}{ }^{\mathrm{H}}, \beta_{2}{ }^{\mathrm{H}}$, and $\log L^{16}$. The refractive index function, $f(\eta)$, has been used by Fuchs et al. ${ }^{31}$ with some success, and we give in Table 6 details of regressions using equation (11), with $f(\eta)$ defined by equation (12).

$$
\begin{gather*}
\log L^{\prime}=c+f f(\eta)+q \mu_{2}{ }^{2}+a \alpha_{2}{ }^{\mathbf{H}}+b{\beta_{2}}^{\mathbf{H}}+l \log L^{16} \tag{11}\\
f(\eta)=\left(\eta^{2}-1\right) /\left(\eta^{2}+2\right) \tag{12}
\end{gather*}
$$

The regression equations based on equation (11) are appreciably poorer than those using equation (10). Not only are R and SD poorer, but significant b-constants are produced, surely as artifacts. Part of this difficulty may be due to crosscorrelations between $\mu_{2}{ }^{2}$ and $\beta_{2}{ }^{\mathrm{H}}(R=0.556)$ and also between $f(\eta)$ and $\log L^{16}(R=0.534)$, that could be overcome by a more suitable selection of solutes. But $f(n)$ must include interactions already dealt with by the $\log L^{16}$ parameter, hence the coefficients of $\log L^{16}$ in equation (11) are always less than those in equation (10). What is required is a parameter that is more specifically related to the polarisability of the solute as regards interactions due to the presence of polarisable electrons. We start with the solute molar refraction, but for convenience defined in terms of

$$
\begin{equation*}
\mathrm{MR}_{\mathbf{x}}=10\left(\eta^{2}-1\right) V_{\mathbf{x}} /\left(\eta^{2}+2\right)=10 f(\eta) V_{\mathbf{x}} \tag{13}
\end{equation*}
$$

the characteristic volume. With V_{X} in units of $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) / 100$, equation (13) will yield $\mathrm{MR}_{\mathbf{X}}$ in the more convenient units of $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) / 10$. Note that η is taken at 293 K with the sodiumD line. Unlike $f(\eta)$ itself, the molar refraction has the interesting property of being the same (within a few per cent) for a given solute in the gas phase and in solution. Hence although $f(\eta)$ is most conveniently measured on bulk liquids, MR (and $M R_{\mathbf{x}}$) can be taken as a property of an isolated molecule. \ddagger In order to

Table 3. The 168 compounds and the parameters used in the regressions.

No.	Compound	δ_{2}	$f(n)$	R_{2}	$\pi_{2}{ }^{*}$	$\mu_{2}{ }^{2}$	$\alpha_{2}{ }^{\text {H }}$	$\beta_{2}{ }^{\text {H }}$	$V_{\mathbf{x}}$	$\log L^{16}$
3352	Methanol	0.00	0.203	0.278	0.40	2.890	0.37	0.41	0.308	0.922
3353	Ethanol	0.00	0.221	0.246	0.40	2.856	0.33	0.44	0.449	1.485
3354	Propan-1-ol	0.00	0.234	0.236	0.40	2.822	0.33	0.45	0.590	2.097
3355	Propan-2-ol	0.00	0.230	0.212	0.40	2.756	0.32	0.47	0.590	1.821
3473	Prop-2-en-1-ol, allyl-OH	0.00	0.250	0.341	0.45	2.560	0.33	0.41	0.547	1.996
3356	Butan-1-ol	0.00	0.242	0.224	0.40	2.756	0.33	0.45	0.731	2.601
3358	2-Methylpropan-1-ol	0.00	0.240	0.217	0.40	2.670	0.33	0.45	0.731	2.399
3357	Butan-2-ol	0.00	0.241	0.217	0.40	2.723	0.32	0.47	0.731	2.338
3359	t-Butyl alcohol	0.00	0.236	0.180	0.40	2.657	0.32	0.49	0.731	2.018
3360	Pentan-1-ol	0.00	0.248	0.219	0.40	2.756	0.33	0.45	0.872	3.106
3361	2-Methylbutan-1-ol	0.00	0.248	0.219	0.40	2.890	0.33	0.45	0.872	3.011
3362	3-Methylbutan-1-ol	0.00	0.245	0.192	0.40	2.560	0.33	0.45	0.872	3.011
3440	Cyclopentanol	0.00	0.270	0.427	0.40	2.890	0.32	0.48	0.763	3.270
3368	Hexan-1-ol	0.00	0.252	0.210	0.40	2.890	0.33	0.45	1.013	3.610
3490	(E)-Hex-2-en-1-ol	0.00	0.263	0.294	0.45	2.560	0.33	0.41	0.970	3.510
3369	Hexan-2-ol	0.00	0.250	0.187	0.40	2.890	0.32	0.47	1.013	3.340
3370	Hexan-3-ol	0.00	0.251	0.200	0.40	2.890	0.32	0.47	1.013	3.440
3372	2-Methylpentan-2-ol	0.00	0.248	0.169	0.40	2.890	0.32	0.49	1.013	3.181
3374	3-Methylpentan-3-ol	0.00	0.252	0.210	0.40	2.890	0.32	0.49	1.013	3.277
3389	Heptan-1-ol	0.00	0.256	0.211	0.40	2.924	0.33	0.45	1.154	4.115
3492	(E)-Hept-2-en-1-ol	0.00	0.267	0.281	0.45	2.560	0.33	0.41	1.111	4.010
3405	Octan-1-ol	0.00	0.258	0.199	0.40	2.958	0.33	0.45	1.295	4.619
3494	(E)-Oct-2-en-l-ol	0.00	0.273	0.270	0.45	2.560	0.33	0.41	1.252	4.520
3410	2-Methylheptan-2-ol	0.00	0.256	0.169	0.40	2.890	0.32	0.49	1.295	3.990
3416	Nonan-1-ol	0.00	0.260	0.193	0.40	2.958	0.33	0.45	1.435	5.124
3426	Decan-1-ol	0.00	0.262	0.191	0.40	2.592	0.33	0.45	1.576	5.628
3429	Undecan-1-ol	0.00	0.263	0.181	0.40	2.890	0.33	0.45	1.717	6.130
3430	Dodecan-1-ol	0.00	0.265	0.175	0.40	2.890	0.33	0.45	1.858	6.640
1551	Acetaldehyde	0.00	0.205	0.208	0.67	7.236	0.00	0.40	0.406	1.230
1552	Propionaldehyde	0.00	0.223	0.196	0.65	6.350	0.00	0.40	0.547	1.815
1569	Propenal, acrolein	0.00	0.243	0.324	0.65	9.734	0.00	0.40	0.504	2.110
1553	Butyraldehyde	0.00	0.234	0.187	0.65	7.398	0.00	0.40	0.688	2.270
1554	Isobutyraldehyde	0.00	0.228	0.146	0.65	7.290	0.00	0.40	0.688	2.060
1570	(E)-But-2-en-1-al	0.00	0.262	0.387	0.75	12.532	0.00	0.40	0.645	2.570
1556	3-Methylbutanal	0.00	0.237	0.144	0.65	6.859	0.00	0.40	0.829	2.620
1558	Hexanal	0.00	0.244	0.146	0.65	7.290	0.00	0.40	0.970	3.370
1560	Heptanal	0.00	0.248	0.140	0.65	7.290	0.00	0.40	1.111	3.860
1561	Octanal	0.00	0.254	0.160	0.65	7.398	0.00	0.40	1.252	4.380
1590	Benzaldehyde	1.00	0.317	0.820	0.92	7.563	0.00	0.42	0.873	3.985
1651	Propan-2-one	0.00	0.220	0.179	0.71	8.294	0.04	0.50	0.547	1.760
1652	Butan-2-one	0.00	0.231	0.166	0.67	7.618	0.00	0.48	0.688	2.287
1653	Pentan-2-one	0.00	0.237	0.143	0.65	7.290	0.00	0.48	0.829	2.755
1706	Cyclopentanone	0.00	0.262	0.373	0.76	10.890	0.00	0.52	0.720	3.120
1659	Hexan-2-one	0.00	0.243	0.136	0.65	7.023	0.00	0.48	0.970	3.262
1660	Hexan-3-one	0.00	0.243	0.136	0.65	7.290	0.00	0.48	0.970	3.310
1708	Cyclohexanone	0.00	0.269	0.403	0.76	9.000	0.00	0.52	0.861	3.615
1664	Heptan-2-one	0.00	0.247	0.123	0.65	6.812	0.00	0.48	1.111	3.760
1712	Cycloheptanone	0.00	0.274	0.436	0.76	9.610	0.00	0.52	1.002	4.110
1675	Octan-2-one	0.00	0.250	0.108	0.65	7.398	0.00	0.48	1.252	4.257
1713	Cyclo-octanone	0.00	0.279	0.474	0.76	8.762	0.00	0.52	1.143	4.610
1750	Acetophenone	1.00	0.312	0.818	0.90	9.000	0.00	0.51	1.014	4.483
1685	Nonan-2-one	0.00	0.254	0.119	0.65	7.301	0.00	0.48	1.392	4.755
1714	Cyclononanone	0.00	0.280	0.490	0.76	8.123	0.00	0.52	1.284	5.110
1690	Decan-2-one	0.00	0.256	0.108	0.65	7.290	0.00	0.48	1.533	5.260
1715	Cyclodecanone	0.00	0.284	0.527	0.76	7.840	0.00	0.52	1.425	5.610
1722	Carvone	0.00	0.294	0.674	0.80	10.049	0.00	0.49	1.339	5.330
1691	Undecan-2-one	0.00	0.258	0.101	0.65	7.290	0.00	0.48	1.674	5.760
1716	Cycloundecanone	0.00	0.288	0.557	0.76	7.840	0.00	0.52	1.566	6.110
1692	Dodecan-2-one	0.00	0.260	0.103	0.65	7.290	0.00	0.48	1.815	6.260
1717	Cyclododecanone	0.00	0.293	0.588	0.76	7.840	0.00	0.52	1.707	6.600
1352	Diethyl ether	0.00	0.217	0.041	0.27	1.323	0.00	0.45	0.731	2.061
1355	Di-n-butyl ether	0.00	0.242	0.000	0.27	1.369	0.00	0.45	1.294	4.001
1414	Furan	1.00	0.254	0.369	0.50	0.436	0.00	0.15	0.536	1.830
1450	Methyl phenyl ether	1.00	0.303	0.708	0.73	1.904	0.00	0.33	0.916	3.926
2101	Nitromethane	0.00	0.233	0.313	0.85	11.972	0.12	0.25	0.424	1.892
2102	Nitroethane	0.00	0.238	0.270	0.80	13.323	0.00	0.25	0.565	2.367
2103	1-Nitropropane	0.00	0.243	0.242	0.79	13.396	0.00	0.25	0.706	2.850
2143	3-Nitrotoluene	1.00	0.317	0.874	0.97	16.000	0.00	0.34	1.032	4.970
2201	Acetonitrile	0.00	0.212	0.237	0.75	15.366	0.09	0.44	0.404	1.560
2203	1-Cyanopropane	0.00	0.234	0.188	0.68	16.557	0.00	0.44	0.586	2.540

Table 3 (continued)

No.	Compound	δ_{2}	$f(n)$	R_{2}	$\pi_{2}{ }^{*}$	$\mu_{2}{ }^{2}$	$\alpha_{2}{ }^{H}$	$\beta_{2}{ }^{\text {H }}$	$V_{\mathbf{x}}$	$\log L^{16}$
2205	1-Cyanobutane	0.00	0.241	0.177	0.68	16.974	0.00	0.44	0.827	3.057
2241	Benzonitrile	1.00	0.308	0.742	0.90	17.472	0.00	0.42	0.871	4.004
2701	Pyridine	1.00	0.299	0.794	0.87	4.796	0.00	0.62	0.675	3.003
2952	Acetic acid	0.00	0.227	0.265	0.60	2.890	0.55	0.43	0.465	1.750
2953	Propanoic acid	0.00	0.235	0.233	0.60	2.890	0.54	0.43	0.606	2.290
2954	Butanoic acid	0.00	0.241	0.210	0.60	2.820	0.54	0.42	0.747	2.830
2956	Pentanoic acid	0.00	0.247	0.205	0.60	2.590	0.54	0.41	0.887	3.380
2957	3-Methylbutanoic acid	0.00	0.244	0.178	0.60	2.790	0.54	0.41	0.887	3.300
2959	Hexanoic acid	0.00	0.251	0.174	0.60	2.490	0.54	0.39	1.028	3.920
2964	Heptanoic acid	0.00	0.251	0.149	0.60	2.790	0.54	0.38	1.169	4.460
2969	Octanoic acid	0.00	0.258	0.150	0.60	2.890	0.54	0.36	1.310	5.000
2975	Nonanoic acid	0.00	0.261	0.132	0.60	2.790	0.54	0.34	1.451	5.550
1860	Methyl acetate	0.00	0.220	0.142	0.60	2.958	0.00	0.40	0.606	1.960
1861	Ethyl acetate	0.00	0.227	0.106	0.55	3.168	0.00	0.45	0.747	2.376
1881	Methyl propanoate	0.00	0.230	0.128	0.55	2.890	0.00	0.45	0.747	2.459
1853	Propyl formate	0.00	0.230	0.132	0.61	3.648	0.00	0.38	0.747	2.413
1862	n-Propyl acetate	0.00	0.234	0.092	0.55	3.419	0.00	0.45	0.887	2.878
1864	n-Butyl acetate	0.00	0.239	0.071	0.55	3.240	0.00	0.45	1.028	3.379
1889	Propyl butanoate	0.00	0.249	0.068	0.55	3.063	0.00	0.45	1.169	3.810
1867	Pentyl acetate	0.00	0.244	0.067	0.55	3.063	0.00	0.45	1.169	3.810
1870	Isopentyl acetate	0.00	0.240	0.051	0.55	3.312	0.00	0.45	1.169	3.740
1892	Isobutyl isobutanoate	0.00	0.242	0.000	0.55	3.240	0.00	0.45	1.310	3.880
1896	Isopentyl isopentanoate	0.00	0.248	0.000	0.55	3.240	0.00	0.45	1.592	4.580
553	Trichloromethane	0.50	0.267	0.425	0.58	1.020	0.20	0.02	0.617	2.480
554	Tetrachloromethane	0.50	0.274	0.458	0.28	0.000	0.00	0.00	0.739	2.823
557	1,2-Dichloroethane	0.50	0.266	0.416	0.81	1.638	0.10	0.05	0.635	2.573
586	1,1,2-Trichloroethene	0.50	0.283	0.524	0.53	0.721	0.12	0.03	0.715	2.997
1038	Benzyl chloride	1.00	0.313	0.821	0.71	3.385	0.00	0.31	0.980	4.290
579	1-Chlorohexane	0.00	0.253	0.201	0.39	3.803	0.00	0.15	1.077	3.710
1002	1,2-Dichlorobenzene	1.00	0.319	0.870	0.80	5.153	0.00	0.03	0.961	4.405
605	Bromoethane	0.00	0.255	0.366	0.48	4.121	0.00	0.17	0.565	2.120
624	1-Bromopentane	0.00	0.266	0.356	0.48	4.840	0.00	0.17	0.988	3.611
637	2-Bromo-octane	0.00	0.267	0.322	0.48	4.000	0.00	0.17	1.411	5.110
651	Iodomethane	0.00	0.313	0.675	0.40	2.624	0.00	0.18	0.508	2.106
670	1-Iodobutane	0.00	0.294	0.628	0.50	4.494	0.00	0.18	0.930	3.628
671	2-Iodobutane	0.00	0.294	0.610	0.50	4.000	0.00	0.18	0.930	3.390
3552	Ethanethiol	0.00	0.259	0.392	0.35	2.459	0.00	0.16	0.554	2.172
3553	n-Propylthiol	0.00	0.263	0.385	0.35	2.280	0.00	0.16	0.695	2.685
3554	Isopropylthiol	0.00	0.256	0.336	0.35	2.560	0.00	0.16	0.695	2.406
3569	Prop-2-en-1-thiol	0.00	0.285	0.542	0.40	2.403	0.00	0.20	0.652	2.510
3555	n-Butylthiol	0.00	0.266	0.382	0.35	2.369	0.00	0.16	0.836	3.243
3556	Isobutylthiol	0.00	0.260	0.356	0.35	2.403	0.00	0.16	0.836	2.880
3558	t-Butylthiol	0.00	0.254	0.281	0.35	2.403	0.00	0.16	0.836	2.558
3601	Thiophene	1.00	0.308	0.684	0.60	0.325	0.00	0.16	0.641	2.943
3559	n-Pentylthiol	0.00	0.269	0.369	0.35	2.403	0.00	0.16	0.977	3.720
3560	Isopentylthiol	0.00	0.272	0.343	0.35	2.403	0.00	0.16	0.977	3.360
3602	2-Methylthiophene	1.00	0.304	0.688	0.40	0.449	0.00	0.14	0.782	3.302
3561	n-Hexylthiol	0.00	0.271	0.361	0.35	2.403	0.00	0.16	1.118	4.220
3603	2,5-Dimethylthiophene	1.00	0.301	0.690	0.40	0.260	0.00	0.16	0.923	3.806
3550	n-Heptanethiol	0.00	0.273	0.357	0.35	2.403	0.00	0.16	1.258	4.720
3562	n-Octylthiol	0.00	0.271	0.353	0.35	2.403	0.00	0.16	1.399	5.310
3563	n -Nonylthiol	0.00	0.271	0.347	0.35	2.403	0.00	0.16	1.540	5.890
3564	n-Decylthiol	0.00	0.270	0.342	0.35	2.403	0.00	0.16	1.681	6.480
3579	Dimethyl sulphide	0.00	0.261	0.404	0.36	2.250	0.00	0.29	0.554	2.238
3580	Diethyl sulphide	0.00	0.265	0.373	0.36	2.310	0.00	0.29	0.836	3.104
3581	Di-n-propyl sulphide	0.00	0.268	0.358	0.36	2.430	0.00	0.29	1.117	4.120
3587	Isopentyl sulphide	0.00	0.272	0.300	0.36	2.560	0.00	0.29	1.681	5.540
3610	Diethyl disulphide	0.00	0.298	0.670	0.64	3.960	0.00	0.22	0.999	4.210
3589	Di-n-butyl sulphide	0.00	0.290	0.345	0.36	2.592	0.00	0.29	1.400	4.950
3585	Methyl-n-propyl sulphide	0.00	0.266	0.380	0.36	2.560	0.00	0.29	0.836	3.240
371	Propene	0.00	0.196	0.103	0.08	0.134	0.00	0.07	0.488	0.946
373	But-1-ene	0.00	0.216	0.100	0.08	0.116	0.00	0.07	0.629	1.491
380	Pent-1-ene	0.00	0.277	0.093	0.08	0.116	0.00	0.07	0.770	2.013
392	Hex-1-ene	0.00	0.234	0.078	0.08	0.116	0.00	0.07	0.911	2.547
406	Hept-1-ene	0.00	0.242	0.092	0.08	0.116	0.00	0.07	1.052	3.063
409	Oct-1-ene	0.00	0.247	0.094	0.08	0.116	0.00	0.07	1.192	3.591
412	(Z)-Oct-2-ene	0.00	0.250	0.135	0.08	0.090	0.00	0.07	1.192	3.650
413	2-Ethylhex-1-ene	0.00	0.251	0.139	0.08	0.116	0.00	0.07	1.192	3.510
468	Oct-1-yne	0.00	0.251	0.155	0.20	0.656	0.13	0.20	1.150	3.480
469	Oct-2-yne	0.00	0.257	0.226	0.20	0.656	0.00	0.20	1.150	3.850

Table 3 (continued)

No.	Compound	δ_{2}	$f(n)$	\boldsymbol{R}_{2}	$\pi_{2}{ }^{*}$	$\mu_{2}{ }^{2}$	$\alpha_{2}{ }^{\text {H }}$	$\boldsymbol{\beta}_{2}{ }^{\text {H }}$	$V_{\mathbf{x}}$	$\log L^{16}$
751	Benzene	1.00	0.295	0.610	0.59	0.000	0.00	0.14	0.716	2.803
752	Toluene	1.00	0.292	0.601	0.55	0.130	0.00	0.14	0.857	3.344
766	Ethylbenzene	1.00	0.292	0.613	0.53	0.348	0.00	0.15	0.998	3.765
843	Styrene	1.00	0.317	0.848	0.55	0.063	0.00	0.18	0.955	3.908
795	Phenylethyne	1.00	0.300	0.679	0.55	0.533	0.12	0.21	0.912	3.715
753	2-Xylene	1.00	0.297	0.663	0.51	0.384	0.00	0.17	0.998	3.937
754	3-Xylene	1.00	0.293	0.623	0.51	0.160	0.00	0.17	0.998	3.864
755	4-Xylene	1.00	0.292	0.613	0.51	0.000	0.00	0.17	0.998	3.858
758	Mesitylene	1.00	0.294	0.649	0.47	0.000	0.00	0.20	1.139	4.399
442	α-Pinene	0.00	0.277	0.446	0.10	0.130	0.00	0.10	1.257	4.200
52	Propane	0.00	0.181	0.000	0.00	0.000	0.00	0.00	0.531	1.050
53	n-Butane	0.00	0.205	0.000	0.00	0.000	0.00	0.00	0.672	1.615
54	Isobutane	0.00	0.197	0.000	0.00	0.000	0.00	0.00	0.672	1.409
55	n-Pentane	0.00	0.219	0.000	0.00	0.000	0.00	0.00	0.813	2.162
58	n -Hexane	0.00	0.229	0.000	0.00	0.000	0.00	0.00	0.954	2.688
287	Cyclohexane	0.00	0.257	0.305	0.00	0.000	0.00	0.00	0.845	2.913
63	n-Heptane	0.00	0.236	0.000	0.00	0.000	0.00	0.00	1.095	3.173
73	2-Methylheptane	0.00	0.240	0.000	0.00	0.000	0.00	0.00	1.236	3.480
74	3-Methylheptane	0.00	0.242	0.000	0.00	0.000	0.00	0.00	1.236	3.510
69	2,3-Dimethylpentane	0.00	0.232	0.000	0.00	0.000	0.00	0.00	1.095	2.841
72	n-Octane	0.00	0.241	0.000	0.00	0.000	0.00	0.00	1.236	3.677
91	n -Nonane	0.00	0.245	0.000	0.00	0.000	0.00	0.00	1.377	4.182
112	2,2,5-Trimethylhexane	0.00	0.242	0.000	0.00	0.000	0.00	0.00	1.377	3.530
126	n -Decane	0.00	0.248	0.000	0.00	0.000	0.00	0.00	1.518	4.686
162	n -Undecane	0.00	0.263	0.000	0.00	0.000	0.00	0.00	1.658	5.191
168	n -Dodecane	0.00	0.254	0.000	0.00	0.000	0.00	0.00	1.799	5.696
174	n-Tridecane	0.00	0.256	0.000	0.00	0.000	0.00	0.00	1.940	6.200
180	n -Tetradecane	0.00	0.258	0.000	0.00	0.000	0.00	0.00	2.081	6.705

Table 4. Regression analysis using equation (9), $n=168$;
$\log L^{\prime}=c+d \delta_{2}+s \pi_{2}{ }^{*}+a \alpha_{2}{ }^{\mathrm{H}}+b{\beta_{2}}^{\mathrm{H}}+m V_{\mathbf{X}}$.

Phase		c	d	s	a	b	m	S^{a}	R^{b}
Carbowax		-2.33	0.20	2.29	2.37	-0.53	1.57	0.22	0.960
	SD c	0.07	0.06	0.12	0.12	0.17	0.05		
	CL d	1.00	0.99	1.00	1.00	0.99	1.00		
DEGS			-2.04	0.25	2.41	2.05	-0.20	1.40	0.24
	SD	0.07	0.07	0.13	0.13	0.18	0.05		
	CL	1.00	1.00	1.00	1.00	0.74	1.00		
PPE		-2.90	0.22	1.93	0.84	-0.38	1.98	0.22	0.959
	SD	0.07	0.06	0.12	0.12	0.17	0.05		
	CL	1.00	1.00	1.00	1.00	0.97	1.00		
TCEP		-1.95	0.20	2.67	2.02	-0.02	1.32	0.23	0.961
	SD	0.07	0.07	0.13	0.13	0.18	0.05		
	CL	1.00	1.00	1.00	1.00	0.08	1.00		
ZE7		-2.43	0.09	1.91	0.81	0.21	1.59	0.16	0.975
	SD	0.05	0.04	0.09	0.08	0.12	0.04		
	CL	1.00	0.96	1.00	1.00	0.91	1.00		

${ }^{a}$ Overall standard deviation. ${ }^{b}$ Overall correlation coefficient. ${ }^{c}$ Standard deviation in the constant. ${ }^{d}$ Confidence level: 1.00 signifies >0.99.
remove the dispersive part already incorporated in $\log L^{16}$, we then subtract out the value of $\mathrm{MR}_{\mathbf{X}}$ for an alkane of the same

$$
\begin{equation*}
R_{\mathbf{2}}=\mathbf{M} R_{\mathbf{x}}(\text { observed })-\mathrm{MR}_{\mathbf{x}}\left(\text { alkane of same } V_{\mathbf{x}}\right) \tag{14}
\end{equation*}
$$

characteristic volume, equation (4). The latter quantity is readily obtained through an excellent linear regression for the n -alkanes,

$$
\begin{align*}
& \mathrm{MR}_{\mathbf{x}}(\text { alkane })=-0.52553+2.83195 V_{\mathbf{x}} \tag{15}\\
& n=13, R=0.99999, \mathrm{SD}=0.0078
\end{align*}
$$

Hence knowing $f(\eta)$ and V_{x} for any solute, MR_{x} and then R_{2} can be calculated via equations (13)-(15). For convenience we tabulate R_{2} in units of $10^{-1} \mathrm{~cm}^{3}$, and give a number of typical values in Table 7. Note that by definition $R_{2}=0$ for all n alkanes, and by calculation R_{2} is also zero for branched chain alkanes and for the rare gases as well.

We now use the new polarisability parameter, R_{2}, in conjunction with $\mu_{2}{ }^{2}$, to construct equation (16), that we apply to the same set of 168 solutes as before. Details are in Table 8.
$\log L^{\prime}=c+r R_{2}+q \mu_{2}{ }^{2}+a \alpha_{2}{ }^{\mathbf{H}}+b \beta_{2}{ }^{\mathrm{H}}+l \log L^{16}$
The quality of the regressions in Table 8 is slightly better than those in Table 6, based on equation (11), but significantly poorer than those in Table 5, based on equation (10). For purposes of characterisation, this might not matter too much, but unfortunately the regressions in Table 8(a) show larger dependences on $\beta_{2}{ }^{H}$ that are probably artifacts [compare Table 8 (a) with Table 8 (b)]. Although there is no significant crosscorrelation between R_{2} and any other explanatory variable in equation (16), there still remains the connection between $\mu_{2}{ }^{2}$ and $\beta_{2}{ }^{\mathbf{H}}, r=0.556$, referred to above. It is possible that for a better selection of solutes without the $\mu_{2}{ }^{2} / \beta_{2}{ }^{\mathrm{H}}$ cross-correlation, equation (16) might perform as well as equation (10), and we intend to investigate this further.

Finally, we suggest that our calculated R_{2} values (Table 7) can replace the empirical δ_{2} values in equation (10) to yield equation (17). Details of regressions using equation (17) are in

$$
\begin{equation*}
\log L^{\prime}=c+r R_{2}+s \pi_{2}^{*}+a \alpha_{2}{ }^{\mathbf{H}}+b \beta_{2}{ }^{\mathrm{H}}+l \log L^{16} \tag{17}
\end{equation*}
$$

Table 9. In terms of overall standard deviation and correlation coefficient, these regressions are the best we have obtained, being slightly better than those given in Table 5. We have also investigated replacement of δ_{2} by R_{2} in equation (9), but, as usual, find that equations using $V_{\mathbf{X}}$ are considerably poorer than those using $\log L^{16}$

Table 5. Regression analysis using equation (10), $n=168$; $\log L^{\prime}=c+d \delta_{2}+s \pi_{2}{ }^{*}+a \alpha_{2}{ }^{\mathrm{H}}+b \beta_{2}{ }^{\mathrm{H}}+l \log L^{16}$.

Phase	c	d	s	a	b	l	SD	R
(a) Carbowax	-2.07	0.05	1.55	2.13	-0.17	0.446	0.14	0.985
SD	0.04	0.04	0.07	0.07	0.10	0.008		
CL	1.00	0.83	1.00	1.00	0.89	1.00		
DEGS	-1.81	0.12	1.76	1.84	0.11	0.399	0.16	0.978
	0.04	0.05	0.09	0.09	0.12	0.010		
	1.00	0.99	1.00	1.00	0.64	1.00		
PPE	-2.54	0.04	1.01	0.53	0.08	0.554	0.11	0.990
	0.03	0.03	0.06	0.06	0.08	0.007		
	1.00	0.77	1.00	1.00	0.66	1.00		
TCEP	-1.74	0.07	2.06	1.82	0.28	0.380	0.16	0.981
	0.04	0.05	0.09	0.09	0.12	0.010		
	1.00	0.88	1.00	1.00	0.98	1.00		
ZE7	-2.10	-0.05	1.17	0.56	0.59	0.434	0.13	0.984
	0.03	0.04	0.07	0.07	0.10	0.008		
	1.00	0.84	1.00	1.00	1.00	1.00		
(b) Carbowax	-2.06	0.08	1.46	2.08		0.446	0.14	0.985
SD	0.04	0.03	0.05	0.07		0.008		
CL	1.00	0.98	1.00	1.00		1.00		
DEGS	-1.81	0.10	1.82	1.87		0.400	0.16	0.978
	0.04	0.04	0.06	0.08		0.010		
	1.00	0.98	1.00	1.00		1.00		
PPE	-2.54	0.02	1.05	0.55		0.555	0.11	0.990
	0.03	0.03	0.04	0.05		0.007		
	1.00	0.61	1.00	1.00		1.00		
TCEP	-1.73	0.02	2.21	1.90		0.382	0.16	0.981
	0.04	0.04	0.06	0.08		0.010		
	1.00	0.40	1.00	1.00		1.00		
ZE7	-2.09	-0.16	1.50	0.72		0.438	0.14	0.980
	0.04	0.03	0.05	0.07		0.009		
	1.00	0.99	1.00	1.00		1.00		

${ }^{a}$ These are the preferred equations.

Table 6. Regression analysis using equation (11), $n=168$;
$\log L^{\prime}=c+f f(\mathrm{n})+q \mu_{2}{ }^{2}+a \alpha_{2}{ }^{\mathrm{H}}+b{\beta_{2}}^{\mathrm{H}}+m V_{\mathbf{x}}$.

Phase		c	f	q	a	b	l	SD	R
Carbowax		-3.48	7.61	0.59	2.34	0.55	0.370	0.19	0.971
	SD	0.16	0.67	0.005	0.11	0.12	0.014		
	CL	1.00	1.00	1.00	1.00	1.00	1.00		
DEGS		-3.62	9.56	0.67	2.06	0.92	0.304	0.22	0.961
	SD	0.18	0.77	0.006	0.13	0.14	0.016		
	CL	1.00	1.00	1.00	1.00	1.00	1.00		
PPE									
	SD	0.11	0.37	0.038	0.66	0.56	0.500	0.14	0.985
	CL	1.00	1.00	1.00	1.00	1.00	1.00		
TCEP		-3.67	10.26	0.080	2.09	1.21	0.278	0.23	0.961
	SD	0.19	0.81	0.006	0.13	0.15	0.017		
	CL	1.00	1.00	1.00	1.00	1.00	1.00		
ZE7		-2.55	2.84	0.051	0.72	1.04	0.409	0.17	0.972
	SD	0.14	0.58	0.005	0.10	0.11	0.012		
	CL	1.00	1.00	1.00	1.00	1.00	1.00		

Table 7. Some values of the molar refraction parameter, R_{2}, and the 'correction factor', δ_{2}.

Solute	$R_{2} / 10^{-1} \mathrm{~cm}^{3}$	δ_{2}
Rare gases	0	0
Alkanes	0	0
Cyclohexane	0.305	0
But-1-ene	0.100	0
But-1-yne	0.178	0
Benzene	0.610	1
1-Chlorobutane	0.210	0
1-Bromobutane	0.360	0
1-Iodobutane	0.628	0
Dichloromethane	0.387	0.5
Tetrachloromethane	0.458	0.5
Chlorobenzene	0.718	1
Butan-2-one	0.166	0
Diethyl ether	0.041	0
Ethyl acetate	0.106	0
Dimethylformamide	0.367	0
Butan-1-ol	0.224	0
n-Butylamine	0.224	0
Acetophenone	0.818	1
Methyl phenyl ether	0.708	1
Ethyl benzoate	0.663	1
Phenol	0.805	1
Aniline	0.955	1

Table 8. Regression analysis using equation (16), $n=168$;
$\log L^{\prime}=c+r R_{2}+q \mu_{2}{ }^{2}+a \alpha_{2}{ }^{\mathrm{H}}+b \beta_{2}{ }^{\mathrm{H}}+l \log L^{16}$.

Phase	c	r	q	a	b	l	SD	R
(a) Carbowax	-1.98	0.86	0.052	2.30	0.53	0.438	0.17	0.976
SD	0.05	0.06	0.005	0.10	0.10	0.011		
CL	1.00	1.00	1.00	1.00	1.00	1.00		
DEGS	-1.74	1.10	0.059	2.03	0.89	0.389	0.19	0.971
	0.05	0.07	0.005	0.11	0.12	0.012		
	1.00	1.00	1.00	1.00	1.00	1.00		
PPE	-2.50	0.62	0.033	0.64	0.55	0.548	0.12	0.988
	0.03	0.04	0.003	0.07	0.08	0.008		
	1.00	1.00	1.00	1.00	1.00	1.00		
TCEP	-1.67	1.16	0.071	2.05	1.19	0.369	0.20	0.970
	0.05	0.07	0.006	0.12	0.13	0.013		
	1.00	1.00	1.00	1.00	1.00	1.00		
ZE7	-1.99	0.34	0.048	0.71	1.04	0.434	0.16	0.974
	0.04	0.06	0.004	0.09	0.10	0.010		
	1.00	1.00	1.00	1.00	1.00	1.00		
(b) Carbowax	-1.92	0.85	0.068	2.56		0.444	0.18	0.972
	0.05	0.07	0.004	0.09		0.011		
CL	1.00	1.00	1.00	1.00		1.00		
DEGS	-1.63	1.08	0.084	2.47		0.398	0.22	0.961
	0.06	0.08	0.005	0.11		0.014		
	1.00	1.00	1.00	1.00		1.00		
PPE	-2.44	0.61	0.049	0.91		0.553	0.14	0.984
	0.03	0.05	0.003	0.07		0.009		
	1.00	1.00	1.00	1.00		1.00		
TCEP	-1.50	1.14	0.105	2.64		0.382	0.25	0.954
	0.06	0.09	0.005	0.12		0.016		
	1.00	1.00	1.00	1.00		1.00		
ZE7	-1.88	0.32	0.078	1.22		0.445	0.21	0.956
	0.05	0.07	0.004	0.10		0.013		
	1.00	1.00	1.00	1.00		1.00		

Table 9. Regression analysis using equation (17), $n=168$;
$\log L^{\prime}=c+r R_{2}+s \pi_{2}{ }^{*}+a \alpha_{2}{ }^{\mathrm{H}}+b \beta_{2}{ }^{\mathrm{H}}+l \log L .^{16}$

Phase	c	r	s	a	b	l	SD	R
(a) Carbowax	-2.07	0.25	1.40	2.13	-0.05	0.442	0.13	0.986
SD	0.03	0.06	0.08	0.07	0.10	0.008		
CL	1.00	1.00	1.00	1.00	0.42	1.00		
DEGS	-1.84	0.43	1.53	1.83	0.28	0.393	0.15	0.982
	0.04	0.07	0.09	0.08	0.11	0.009		
	1.00	1.00	1.00	1.00	0.98	1.00		
PPE	-2.56	0.25	0.85	0.53	0.21	0.550	0.10	0.991
	0.03	0.05	0.06	0.05	0.08	0.006		
	1.00	1.00	1.00	1.00	0.99	1.00		
TCEP	-1.76	0.36	1.84	1.81	0.45	0.374	0.15	0.984
	0.04	0.07	0.09	0.08	0.11	0.009		
	1.00	1.00	1.00	1.00	1.00	1.00		
ZE7	-2.08	-0.24	1.31	0.56	0.48	0.438	0.12	0.985
SD	0.03	0.06	0.07	0.06	0.09	0.008		
	1.00	1.00	1.00	1.00	1.00	1.00		
(b) ${ }^{\text {a }}$ Carbowax	-2.07	0.26	1.37	2.11		0.442	0.13	0.986
SD	0.03	0.05	0.05	0.06		0.008		
CL	1.00	1.00	1.00	1.00		1.00		
DEGS	-1.83	0.35	1.70	1.92		0.396	0.15	0.981
	0.04	0.06	0.06	0.07		0.009		
	1.00	1.00	1.00	1.00		1.00		
PPE	-2.55	0.19	0.98	0.59		0.552	0.11	0.991
	0.03	0.04	0.04	0.05		0.007		
	1.00	1.00	1.00	1.00		1.00		
TCEP	-1.75	0.23	2.12	1.94		0.379	0.16	0.982
	0.04	0.06	0.06	0.08		0.010		
	1.00	1.00	1.00	1.00		1.00		
ZE7	-2.07	0.38	1.61	0.70		0.442	0.13	0.983
	0.03	0.05	0.05	0.06		0.008		
	1.00	1.00	1.00	1.00		1.00		

${ }^{a}$ These are the preferred equations.

In our view, equation (17) represents the most satisfactory regression equation we have been able to construct. Analysis of the constants follows closely our analysis using equation (10). Although the analysis via equation (17) is only slightly better than that through equation (10), we prefer the former because the R_{2} parameter is a well-defined explanatory variable that refers to a specific type of solute-solvent phase interaction. From the method of determination of R_{2}, as well as from inspection of R_{2} values, it follows that the $r R_{2}$ term in equation (17) is a quantitative measure of the ability of a solute to interact with the solvent through solute π (mainly) or n -electron pairs. Furthermore, R_{2} is a reasonably independent explanatory variable; cross-correlation coefficients between R_{2} and the other explanatory variables in equations (16) and (17) are:

$$
\begin{array}{ccccc}
\pi_{2}{ }^{*} & \mu_{2}{ }^{2} & \alpha_{2}{ }^{H} & \beta_{2}{ }^{H} & \log L^{16} \\
0.503 & 0.175 & -0.152 & 0.025 & 0.124
\end{array}
$$

There is bound to be some correlation between R_{2} and $\pi_{2}{ }^{*}$ because we have still not succeeded in subtracting all the polarisability contribution from $\pi_{2}{ }^{*}$. However, equation (17) does go some way to so doing.

Table 10. The characterisation of stationary phases at 393 K .

Phase	c^{a}	d	s	a	l
Carbowax	-2.06	0.08	1.46	2.08	0.445
DEGS	-1.81	0.10	1.82	1.87	0.400
PPE	-2.54	0.02	1.05	0.55	0.555
TCEP	-1.73	0.02	2.21	1.90	0.382
ZE7	-2.54	0.16	1.50	0.72	0.438
	c	r	s	a	l
Carbowax	-2.07	0.26	1.37	2.11	0.442
DEGS	-1.83	0.35	1.70	1.92	0.396
PPE	-2.55	0.19	0.98	0.59	0.552
TCEP	-1.75	0.23	2.12	1.94	0.379
ZE7	-2.07	-0.38	1.61	0.70	0.442
	c	r	q	a	l
Carbowax	-1.92	0.85	0.068	2.56	0.444
DEGS	-1.63	1.08	0.084	2.47	0.398
PPE	-2.44	0.61	0.049	0.91	0.553
TCEP	-1.50	1.14	0.105	2.64	0.382
ZE7	-1.88	0.32	0.078	1.22	0.445

${ }^{a}$ Note that this constant includes the term $\log L^{\text {Decance }}$, see equation (8).

Conclusions

A number of equations can be constructed for the characterisation of gas chromatographic phases, and, indeed, any solvent phase, through a series of constants that refer to specific solute-solvent interactions. Our preferred equation (17) leads to a set of constants c, r, s, a, b, and l of which r refers to interactions through solute π - and n - electron pairs, s to interactions of the dipole-dipole and dipole-induced dipole type (together with some polarisability effects), a to solute hydrogenbond acid/solvent hydrogen-bond base interactions, b to solute hydrogen-bond base/solvent hydrogen-bond acid interactions and l to a combination of general dispersion forces plus cavity effects. The methodology does not suffer from the technical deficiences of the Rohrschneider-McReynolds method, as outlined by Poole et al., ${ }^{6}$ and can be applied to any condensed phase. We list in Table 10, the characteristic constants for the Laffort phases, using equations that omit the $\beta_{2}{ }^{\mathrm{H}}$ explanatory variable. The dipolarity of the three phases, using either $\pi_{2}{ }^{*}$ or μ^{2} as a probe, is always in the order:

$$
\text { TCEP }>\text { DEGS }>\text { ZE7 }>\text { Carbowax }>\text { PPE }
$$

and the hydrogen-bond basicity of the phases, as given by the a-constant, is best represented by the order,

$$
\text { Carbowax }>\text { TCEP } \geq \text { DEGS }>\text { ZE7 }>\text { PPE }
$$

The ability of the phase to interact with solutes specifically through π - and n-solute electron pairs is given by the r-constant in the $r R_{2}$ term. There is not very good quantitative agreement between equations (16) and (17), but both equations show that the fluorinated solvent ZE7 has the least ability to take part in π - and n-interactions.

We aim to extend this method of characterisation to other stationary phases and to common solvents, and hope to report further in the near future.

Acknowledgements

We thank the US Army Research, Development, and Standardisation Group for support under Contract DAJA 45-87-C-0004, and we are grateful to Professor Paul Laffort for his advice on the b-values.

References

1 L. Rohrschneider, J. Chromatogr., 1966, 22, 6.
2 W. O. McReynolds, J. Chromatogr. Sci., 1970, 8, 685.
3 E. Sz. Kovats, Helv. Chim. Acta, 1958, 41, 1915.
4 G. Tarján, A. Kiss, G. Kocsis, S. Mészáros, and J. M. Takács, J. Chromatogr., 1976, 119, 327.
5 M. V. Budahegyi, E. R. Lombosi, T. S. Lombosi, S. Y. Mészáros, Sz. Nyiredy, G. Tarján, I. Timár, and J. M. Takács, J. Chromatogr., 1983, 271, 213.
6 S. K. Poole, B. R. Kersten, R. M. Pomaville, and C. F. Poole, LC-GC, 1989, 6, 401; B. R. Kersten, C. F. Poole, and K. G. Furton, J. Chromatogr., 1987, 411, 43; S. K. Poole, B. R. Kersten, and C. F. Poole, J. Chromatogr., 1989, 471, 91.
7 J. Novak, J. Chromatogr., 1973, 78, 269.
8 J. Novak, J. Ruzickova, S. Wicar, and J. Janak, Anal. Chem., 1973, 45, 1365.

9 R. V. Golovnya and T. A. Misharina, Chromatographia, 1977, 10, 658.
10 R. I. Sidarov, Zh. Fiz. Khim., 1980, 54, 1997 (Engl. Transl. p. 1136).
11 M. H. Abraham, J. Am. Chem. Soc., 1982, 104, 2085.
12 Th. Kleinert and W. Ecknig, J. Chromatogr., 1984, 315, 75.
13 Th. Kleinert, W. Ecknig, and J. Novak, J. Chromatogr., 1984, 315, 85.
14 M. Roth and J. Novak, J. Chromatogr., 1983, 258, 23.
15 W. Burns and S. J. Hawkes, J. Chromatogr. Sci., 1977, 15, 185.
16 E. Chong, B. deBriceno, G. Miller, and S. Hawkes, Chromatographia, 1985, 20, 293.
17 M. J. Kamlet, R. M. Doherty, J.-L.M. Abboud, M. H. Abraham, and R. W. Taft, Chemtech., 1986, 16, 566.

18 M. H. Abraham, R. M. Doherty, M. J. Kamlet, and R. W. Taft, Chem. Brit., 1986, 22, 551.

19 M. J. Kamlet, R. M. Doherty, M. H. Abraham, and R. W. Taft, QSAR, 1988, 7, 71.
20 M. H. Abraham, P. L. Grellier, I. Hamerton, R. A. McGill, D. V. Prior, and G. S. Whiting, Faraday Discuss. Chem. Soc., 1988, 85, 107.
21 M. H. Abraham, P. L. Grellier, and R. A. McGill, J. Chem. Soc., Perkin Trans. 2, 1987, 797.
22 F. Patte, M. Etcheto, and P. Laffort, Anal. Chem., 1982, 54, 2239.
23 These are the b-values given in Table III of ref. 22 under the row equation 5, personal communication from Professor Laffort.
24 M. H. Abraham, P. P. Duce, P. L. Grellier, D. V. Prior, J. J. Morris, and P. J. Taylor, Tetrahedron Lett., 1988, 29, 1587.
25 M. H. Abraham, P. L. Grellier, D. V. Prior, P. P. Duce, J. J. Morris, and P. J. Taylor, J. Chem. Soc.., Perkin Trans. 2, 1989, 699.
26 M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris, P. J. Taylor, C. Lawrence, and M. Berthelot, Tetrahedron Lett., 1989, 30, 2571.

27 M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris, and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1990, 521.
28 M. H. Abraham and G. S. Whiting, unpublished work.
29 M. H. Abraham and J. C. McGowan, Chromatographia, 1987, 23, 243.

30 J. G. Kirkwood, J. Chem. Phys., 1934, 2, 351.
31 R. Fuchs, M. H. Abraham, M. J. Kamlet, and R. W. Taft, J. Phys. Org. Chem., 1982, 2, 559.

Paper 0/00007H
Received 2nd January 1990
Accepted 26th April 1990

[^0]: \dagger Part 12: M. H. Abraham, G. S. Whiting, Y. Alarie, J. J. Morris, P. J. Taylor, R. M. Doherty, R. W. Taft, and G. O. Nielsen, QSAR, 1990, 9, 6.

[^1]: * We denote solute properties by subscript 2 and solvent properties by subscript 1 .
 \dagger It is of no value to use $V_{\mathrm{G}}{ }^{\circ}$, the specific retention volume corrected to 273 K , because $V_{G}{ }^{\circ}$ must be converted back to V_{G} for use in equation (7).
 \ddagger Except for gas/water partitions, but in this case neither V_{x} nor $\log L^{16}$ are very significant. ${ }^{20}$

[^2]: \dagger Kirkwood ${ }^{30}$ showed that the Gibbs energy of a dipole in a dielectric continuum was proportional to μ^{2} / r^{3} where r is the radius of a sphere containing the dipole. Now many functional groups contain a dipole within a sphere of a similar radius, so that the Gibbs energy is approximately proportional to μ^{2}.
 \ddagger We have confirmed that MR is essentially the same in the gas phase and bulk liquid even for associated compounds such as water and alcohols. The one exception we have noted is acetic acid, probably due to the extensive dimerisation that takes place in the gas phase.

